Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
7.The Waveform Channel

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

The Big Plan

- Although we are thinking about digital communication systems,
- actual signaling in the wire or air is in continuous time which is described by the waveform channel:

$$
R(t)=S(t)+N(t)
$$

- Directly finding the optimal (MAP) detector or evaluating the performance $P(\mathcal{E})$ of such system is difficult.
- Our approach is to first construct an equivalent vector channel that preserves the relevant features. (Chapter 7)
- Then, at the end, we can use what we learn to go back to the original waveform channel and directly work with the waveforms.

Review: ECS315

ECS 315: Probability and Random Processes

HW Solution 11 - Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.
Problem 2 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the interval ($0,2 \pi$).
(a) Consider another random variable X defined by

$$
X=5 \cos (7 t+\Theta)
$$

where t is some constant. Find $\mathbb{E}[X]$.
Solution: First, because Θ is a uniform random variable on the interval $(0,2 \pi)$, we know that $f_{\Theta}(\theta)=\frac{1}{2 \pi} 1_{(0,2 \pi)}(t)$. Therefore, for "any" function g, we have

$$
\mathbb{E}[g(\Theta)]=\int_{-\infty}^{\infty} g(\theta) f_{\Theta}(\theta) d \theta
$$

(a) X is a function of $\Theta \cdot \mathbb{E}[X]=5 \mathbb{E}[\cos (7 t+\Theta)]=5 \int_{0}^{2 \pi} \frac{1}{2 \pi} \cos (7 t+\theta) d \theta$. Now, we know that integration over a cycle of a sinusoid gives 0 . So, $\mathbb{E}[X]=0$.

Autocorrelation Function

For random variables, correlation: $\mathbb{E}[X Y]$

11.4 Linear Dependence

Definition 11.47. Given two random variables X and Y, we may calculate the following quantities:
(a) Correlation: $\mathbb{E}[X Y]$.
(b) Covariance: $\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)] .=\mathbb{E}[X Y]-\mathbb{E} X \mathbb{E} Y$
(c) Correlation coefficient: $\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}} \quad \operatorname{IE}\left[\left(\frac{X-I E X}{\sigma_{X}}\right)\left(\frac{Y-I E Y}{\sigma_{Y}}\right)\right]$

For a random process, autocorrelation function:

$$
R_{X}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]
$$

For two random processes, cross-correlation function:

$$
R_{X, Y}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right]
$$

Review: ECS315

(b) Consider another random variable Y defined by

$$
Y=5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)
$$

where t_{1} and t_{2} are some constants. Find $\mathbb{E}[Y]$.

Solution:

(b) Y is another function of Θ.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)\right]=\int_{0}^{2 \pi} \frac{1}{2 \pi} 5 \cos \left(7 t_{1}+\theta\right) \times 5 \cos \left(7 t_{2}+\theta\right) d \theta \\
& =\frac{25}{2 \pi} \int_{0}^{2 \pi} \cos \left(7 t_{1}+\theta\right) \times \cos \left(7 t_{2}+\theta\right) d \theta .
\end{aligned}
$$

Recall ${ }^{1}$ the cosine identity

$$
\cos (a) \times \cos (b)=\frac{1}{2}(\cos (a+b)+\cos (a-b)) .
$$

Therefore,

$$
\begin{aligned}
\mathbb{E} Y & =\frac{25}{4 \pi} \int_{0}^{2 \pi} \cos \left(7 t_{1}+7 t_{2}+2 \theta\right)+\cos \left(7\left(t_{1}-t_{2}\right)\right) d \theta \\
& =\frac{25}{4 \pi}\left(\int_{0}^{2 \pi} \cos \left(7 t_{1}+7 t_{2}+2 \theta\right) d \theta+\int_{0}^{2 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) d \theta\right) .
\end{aligned}
$$

The first integral gives 0 because it is an integration over two period of a sinusoid. The integrand in the second integral is a constant. So,

$$
\mathbb{E} Y=\frac{25}{4 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) \int_{0}^{2 \pi} d \theta=\frac{25}{4 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) 2 \pi=\frac{25}{2} \cos \left(7\left(t_{1}-t_{2}\right)\right)
$$

Standard Quaternary PSK

Standard Quaternary QAM

Modulator and Waveform Channel

Goal: Want to transmit the message (index) $W \in\{1,2,3, \ldots, M\}$
Prior Probabilities: $p_{j}=P[W=j]$

Waveform Channel:

M-ary Scheme
$\mathrm{M}=2$: Binary
$\mathrm{M}=3$: Ternary
M $=4$: Quaternary M possibilities for $S(t)$:
M possible messages requires

$$
\left\{s_{1}(t), s_{2}(t), \ldots, s_{M}(t)\right\}
$$

$R(t)=S(t)+N(t)$

Received waveform

Transmission of the message $W=j$ is done by inputting the corresponding waveform $s_{j}(t)$ into the channel. Prior Probabilities: $p_{j}=P[W=j]=P\left[S(t)=s_{j}(t)\right]$ Energy: $E_{j}=\left\langle s_{j}(t), s_{j}(t)\right\rangle \quad E_{s}=\sum_{j=1}^{M} p_{j} E_{j}=\left(\log _{2} M\right) E_{b}$

Conversion to Vector Channels

Waveform Channel: $\quad R(t)=S(t)+N(t) \quad$ Find K orthonormal basis functions

Vector Channel
 $\overrightarrow{\mathbf{R}}=\overline{\mathbf{S}}+\overline{\mathbf{N}}$

Note that $S_{i}^{(j)}$, the $i^{\text {th }}$ component of the $\overrightarrow{\mathbf{S}}$ vector, comes from the inner-product:

$$
S_{i}^{(j)}=\left\langle S(t), \phi_{i}(t)\right\rangle
$$

The received vector \vec{R} is computed in the same way: the j component is given by

$$
R_{i}=\left\langle r(t), \phi_{i}(t)\right\rangle
$$

$\left\{\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{K}(t)\right\}$
for the space spanned by
$\left\{s_{1}(t), s_{2}(t), \ldots, s_{M}(t)\right\}$.
This gives vector representations for the waveforms $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$:

$$
{\overrightarrow{\mathbf{s}}^{(1)}, \overrightarrow{\mathbf{s}}^{(2)}, \ldots, \overrightarrow{\mathbf{s}}^{(M)}, ~}_{\text {M }}
$$

which can be visualized in the form of signal constellation

Prior Probabilities:

$$
\begin{aligned}
p_{j} & =P[W=j]=P\left[S(t)=s_{j}(t)\right] \\
& =P\left[\stackrel{\rightharpoonup}{\mathbf{S}}=\overline{\mathbf{s}}^{(j)}\right]
\end{aligned}
$$

$$
N_{i}=\left\langle N(t), \phi_{i}(t)\right\rangle \quad \text { For additive white Gaussian noise (AWGN) process } N(t)
$$

$$
N_{i} \sim N \sim \mathcal{N}\left(0, \frac{N_{0}}{2}\right)=\mathcal{N}\left(0, \sigma^{2}\right) \Rightarrow \overline{\mathbf{N}} \sim \mathcal{N}\left(\overline{\mathbf{0}}, \frac{N_{0}}{2} I\right) \Rightarrow f_{\overline{\mathbf{N}}}(\overline{\mathbf{n}})=\frac{1}{(2 \pi)^{\frac{K}{2}} \sigma^{K}} e^{-\frac{1|\boldsymbol{n}|^{2}}{2 \sigma^{2}}}
$$

